skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Haoyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel, angle-based path metric for the multi-manifold clustering problem. This metric, which we call the largest-angle path distance (LAPD), is computed as a bottleneck path distance in a graph constructed on d-simplices of data points. When data is sampled from a collection of d-dimensional manifolds which may intersect, the method can cluster the manifolds with high accuracy and automatically detect how many manifolds are present. By leveraging fast approximation schemes for bottleneck distance, this method exhibits quasi-linear computational complexity in the number of data points. In addition to being highly scalable, the method outperforms existing algorithms in numerous numerical experiments on intersecting manifolds, and exhibits robustness with respect to noise and curvature in the data. 
    more » « less